skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giles, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The SETI Ellipsoid is a strategy for technosignature candidate selection that assumes that extraterrestrial civilizations who have observed a galactic-scale event—such as supernova 1987A—may use it as a Schelling point to broadcast synchronized signals indicating their presence. Continuous wide-field surveys of the sky offer a powerful new opportunity to look for these signals, compensating for the uncertainty in their estimated time of arrival. We explore sources in the TESS continuous viewing zone, which corresponds to 5% of all TESS data, observed during the first 3 yr of the mission. Using improved 3D locations for stars from Gaia Early Data Release 3, we identified 32 SN 1987A SETI Ellipsoid targets in the TESS continuous viewing zone with uncertainties better than 0.5 lt-yr. We examined the TESS light curves of these stars during the Ellipsoid crossing event and found no anomalous signatures. We discuss ways to expand this methodology to other surveys, more targets, and different potential signal types. 
    more » « less
  2. The search for extraterrestrial intelligence (SETI) Ellipsoid is a geometric method for prioritizing technosignature observations based on the strategy of receiving signals synchronized to conspicuous astronomical events. Precise distances to nearby stars from Gaia makes constraining Ellipsoid crossing times possible. Here we explore the utility of using the Gaia Catalog of Nearby Stars to select targets on the SN 1987A SETI Ellipsoid, as well as the Ellipsoids defined by 278 classical novae. Less than 8% of stars within the 100 pc sample are inside the SN 1987A SETI Ellipsoid, meaning the vast majority of nearby stars are still viable targets for monitoring over time. We find an average of 734 stars per year within the 100 pc volume will intersect the Ellipsoid from SN 1987A, with ∼10% of those having distance uncertainties from Gaia better than 0.1 lyr. 
    more » « less